Implementasi metode K-Nearest Neighbor dan bagging untuk klasifikasi mutu produksi jagung

  • Moch. Lutfi Universitas Yudharta Pasuruan
Keywords: k-nn, bagging, imputation, classification, corn


Corn is an agricultural crop in the Indonesian community, besides rice and soybeans because almost all of the area is fertile with planting seeds, the quality of corn quality that must be fulfilled as a food ingredient is very necessary for crop-producing farmers. The k-nearest neighbor algorithm is a method used to make predictions or classifications of objects based on training data that are the closest to the object or often called the euclidian distance. In this study used replace imputation for the preprocessing stage, missing value and baggin data are used to handle datasets in large scale while k-nearest neighbor is used as a classification of quality of corn quality based on attributes Variatas, Length, Shape, Taste Color, Seasonal Technique, Pest PH. . Based on the test data the best accuracy value is 79.30%, precision is 83.04% while recall with the value of 80.93% is obtained from the results of the performance test of bagging and replace imputation methods on the k-nearest neighbor algorithm with handling of missing value.


Abellán, J. (2013). Ensembles of decision trees based on imprecise probabilities and uncertainty measures. Information Fusion, 14(4), 423–430.

Fayed, H. A., & Atiya, A. F. (2009). A novel template reduction approach for the K-nearest neighbor method. IEEE Transactions on Neural Networks, 20(5), 890–896.

Gorunescu, F. (2011). Data mining: concepts and techniques. Chemistry &

Han, J., & Kamber, M. (2012). Data Mining: Concepts and Techniques (3rd ed).

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.

Indonesia, S. N. (1998). SNI 01-4483-1998 Jagung bahan baku pakan Badan Standardisasi Nasional - BSN.

Munanda, E., & Nanang, P. (2010). Perancangan Sistem Pakar untuk Mendiagnosa Penyakit Tanaman jagung menggunakan Fuzzy MCDM berbasis Web. Litek, 10, 113-117..

Munarto, R., Permata, E., & Salsabilla, R. (2014), Klasifikasi Kualitas Biji Jagung Manis Berdasarkan Fitur Warna menggunakan Fuzzy Logic. Prosiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri. Universitas Muhammadiyah Surakarta.

Effendy, F., & Purbandini, P. (2018). Klasifikasi Rumah Tangga Miskin Menggunakan Ordinal Class Classifier. Jurnal Nasional Teknologi dan Sistem Informasi, 4(1), 30-36.

Neo, T. K. C., & Ventura, D. (2012). A direct boosting algorithm for the k-nearest neighbor classifier via local warping of the distance metric. Pattern Recognition Letters, 33(1), 92–102.

Setiawan, T. A., Wahono, R. S., & Syukur, A. (2015). Integrasi metode sample bootstrapping dan weighted principal component analysis untuk meningkatkan performa K-nearest neighbor pada dataset besar. Journal of Intelligent Systems, 1(2), 76-81.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437.

Wahono, R S, & Suryana, N. (2013). Combining particle swarm optimization based feature selection and bagging technique for software defect prediction. International Journal of Software Engineering and Its Applications, 7(5), 153–166.

Wahono, R. S., Suryana, N., & Ahmad, S. (2014). Metaheuristic optimization based feature selection for software defect prediction. Journal of Software, 9(5), 1324–1333.

Wan, C. H., Lee, L. H., Rajkumar, R., & Isa, D. (2012). A hybrid text classification approach with low dependency on parameter by integrating K-nearest neighbor and support vector machine. Expert Systems with Applications, 39(15), 11880–11888.

Xindong Wu, V. K. (2009). The Top Ten Algorithms in Data Mining. Data Mining and Knowledge Discovery.

How to Cite
Lutfi, M. (2019). Implementasi metode K-Nearest Neighbor dan bagging untuk klasifikasi mutu produksi jagung. AGROMIX, 10(2), 130-137.