Photosynthetic pigment content and growth of chili under low light intensity for agroforestry crop development

Kandungan pigmen fotosintetik dan pertumbuhan cabai pada intensitas cahaya rendah untuk pengembangan sayuran agroforestry

  • Zulfa Ulinnuha Univeritas Jenderal Soedirman
  • Risqa Naila Khusna Syarifah Program Studi Agroteknologi, Fakultas Pertanian Universitas Jenderal Soedirman, Jl. Dr. Soeparno No. 63, Karang wangkal, Purwokerto Utara
Keywords: Chili, low light intensity, photosynthetic pigment

Abstract

Introduction:  Plants that grow and develop in a shaded environment are difficult to produce optimally. Therefore, the use of plant species that are able to produce optimally in a shaded environment is very important to be used as an agroforestry area. The research purposes was to observe morpho-physiological characters that can be used as characters to determine chilli plants that can produced in low light intensity area. Methods: A field experiment was conducted at farmer field in Pekuncen, Banyumas, Indonesia from May to October 2020. The research was arranged in randomized complete block design (RCBD) with three replications. The first plot was shading intensity (0% (control) and 50%) and the second plot consisted of nine chilli varieties, V1 (Segana), V2 (Lada Hijau), V3 (Bara), V4 (Catas),V5 (Kerinci), V6 (Raya), V7 (Genie), V8 (Sonar), and V9 (Rajo). Results: The results of this research showed that shade affected on leaves number and leaves area, but not affected on plant height and stem diameter.  Shading net  was affected on chlorophyll a and b, but not affected on chlorophyll content. Decreasing of total chlorophyll on 50% shade net occurring in shade sensitive varieties was significantly different than shade-tolerant varieties. Tolerant varieties based on the observation criteria were Bara (V3), Genie (V7), and Sonar (V8). Conclusion: Leaf area and leaf pigment character can be used as a reference for determining the resistance of varieties to low light.

References

Anggraeni, B. W. (2010). Studi agronomi, morfo-anatomi dan fisiologi kedelai (Glycine max (L) Merr.) pada kondisi cekaman intensitas cahaya rendah [thesis]. Institut Pertanian Bogor.

Baharuddin, R., Chozin, M. A., & Syukur, M. (2014). Toleransi 20 Genotipe Tanaman Tomat terhadap Naungan Shade Tolerance of 20 Genotypes of Tomato (Lycopersicon esculentum Mill). Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 42(2), 132-137.

Belgio, E., Johnson, M. P., Jurić, S., & Ruban, A. V. (2012). Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime - Both the maximum and the nonphotochemically quenched. Biophysical Journal, 102(12), 2761–2771. https://doi.org/10.1016/j.bpj.2012.05.004

Beneragama, C. K., & Goto, K. (2011). Chlorophyll a: b Ratio Increases Under Low-light in’Shade-tolerant’Euglena gracilis. Tropical Agricultural Research, 22(1), 12–25.

Croft, H., & Chen, J. M. (2017). Leaf pigment content. In Comprehensive Remote Sensing (Vols. 1–9, Issue December). Elsevier Inc. https://doi.org/10.1016/B978-0-12-409548-9.10547-0

Djukri, D., & Purwoko, S. S. (2003). Pengaruh naungan paranet terhadap sifat toleransi tanaman talas (Colocasia esculenta (L.) Schott). Ilmu Pertanian (Agricultural Science), 10(2), 17 – 25).

Fan, X. X., Xu, Z. G., Liu, X. Y., Tang, C. M., Wang, L. W., & Han, X. lin. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturae, 153, 50–55. https://doi.org/10.1016/j.scienta.2013.01.017

Fiorucci, A. S., & Fankhauser, C. (2017). Plant Strategies for Enhancing Access to Sunlight. Current Biology, 27(17), R931–R940. https://doi.org/10.1016/j.cub.2017.05.085

Guidi, L., Tattini, M., & Landi, M. (2017). How Does Chloroplast Protect Chlorophyll Against Excessive Light? In Chlorophyll. IntechOpen. https://doi.org/10.5772/67887

Khumaida N. (2002). Studies on adaptability of soybean and upland rice to shade stress [Doctoral Disertation]. Tokyo (JP): The University of Tokyo.

Kunderlikova, K., Brestic, M., Zivcak, M., & Kusniarova, P. (2016). Photosynthetic responses of sun- and shade-grown chlorophyll b deficient mutant of wheat. Journal of Central European Agriculture, 17(4), 950–956. https://doi.org/10.5513/JCEA01/17.4.1797

Kurniawan, M., Izzati, M., Nurchayati, Y., Biologi, L., Tumbuhan, F., Biologi, J., Matematika, F., Alam, I. P., Diponegoro, U., Soedharto, J. P., & Universitas, K. (2010). Kandungan klorofil, karotenoid, dan vitamin C pada beberapa spesies tumbuhan akuatik. Anatomi Fisiologi, 18(1), 28–40. https://doi.org/10.14710/baf.v18i1.2614

Latifa, R., Hadi, S., & Nurrohman, E. (2019). The exploration of chlorophyll content of various plants in City Forest of Malabar Malang. Bioedukasi, 17(2), 50-62. https://doi.org/10.19184/bioedu.v17i2.14091

Lee, J. A., Hendry, G. A. F., & Grime, J. P. (1993). Methods in comparative plant ecology: a laboratory manual. The Journal of Ecology, 81(4), 832. https://doi.org/10.2307/2261686

Maulid, R. R & Laily, A. N. (2015). Kadar total pigmen klorofil dan senyawa antosianin ekstrak kastuba (euphorbia pulcherrima) berdasarkan umur daun. In Seminar nasional Konservasi dan Pemanfaatan Sumber Daya Alam. Surakarta (ID): Universitas Sebelas Maret.

Mazandarani, M., Moghaddam, P. Z., Baiat, H., Zolfaghari, M. R., Ghaemi, E. A., & Hemati, H. (2011). Antioxidant activity, phenol, flavonoid and anthocyanin contents in various extracts of Onosma dichroanthum Boiss. in north of Iran. Iranian Journal of Plant Physiology, 1(3), 169–176.

Read, E. L., Schlau-Cohen, G. S., Engel, G. S., Wen, J., Blankenship, R. E., & Fleming, G. R. (2008). Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy. Biophysical Journal, 95(2), 847–856. https://doi.org/10.1529/biophysj.107.128199

Ritonga, A. W., Chozin, M. A., Syukur, M., Maharijaya, A., & Sobir. (2018). Short communication: Genetic variability, heritability, correlation, and path analysis in tomato (Solanum lycopersicum) under shading condition. Biodiversitas, 19(4), 1527–1531. https://doi.org/10.13057/biodiv/d190445

Sitompul, S. M., & Guritno, B. (1995). Analisis pertumbuhan tanaman. Gadjah Mada University Press.

Sopandie, D., Chozin, M. A., Sastrosumarjo S., Juhaeti, T., & Sahardi. (2003). Toleransi padi gogo terhadap naungan. Hayati Journal of Biosciences, 10(2), 7 1-75.

Soverda, N. (2002). Karakteristik fisiologi fotosintetik dan pewarisan sifat toleran naungan pada padi gogo [Doktoral Disertation]. Bogor (ID): Institut Pertanian Bogor.

Soverda, N. (2011). Studi karakteristik fisiologi fotosintetik tanaman kedelai toleran terhadap naungan. Jurnal Ilmu Pertanian Kultivar, 5(1), 42-52.

Soverda, N., & Alia, Y. (2013). Pewarisan sifat tanaman kedelai (Glycine max (L) Merril) toleran terhadap naungan melalui karakter fisiologi fotosintetik. Jurnal Ilmu Pertanian KULTIVAR, 7(1), 1-8.

Sulistyowati, D., Chozin, M. A., Syukur, M., Melati, M., & Guntoro, D. (2016). Selection of shade-tolerant tomato genotypes. Journal of Applied Horticulture, 18(2), 154–159. https://doi.org/10.37855/jah.2016.v18i02.27

Sulistyowati, D., Chozin, M. A., Syukur, M., Melati, M., & Guntoro, D. (2019). Respon karakter morfo-fisiologi genotipe tomat senang naungan pada intensitas cahaya rendah. Jurnal Hortikultura, 29(1), 22-32. https://doi.org/10.21082/jhort.v29n1.2019.p22-32

Susanto, G., & Sundari, T. (2016). Perubahan karakter agronomi aksesi plasma nutfah kedelai di lingkungan Ternaungi. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 39(1), 1–6. https://doi.org/10.24831/jai.v39i1.13180

Valladares, F., Laanisto, L., Niinemets, Ü., & Zavala, M. A. (2016). Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecology and Diversity, 9(3), 237–251. https://doi.org/10.1080/17550874.2016.1210262

Yusof, F. F. M., Yaacob, J. S., Osman, N., Ibrahim, M. H., Wan-Mohtar, W. A. A. Q. I., Berahim, Z., & Zain, N. A. M. (2021). Shading effects on leaf gas exchange, leaf pigments and secondary metabolites of polygonum minus huds., an aromatic medicinal herb. Plants, 10(3), 608. https://doi.org/10.3390/plants10030608

Zhu, H., Li, X., Zhai, W., Liu, Y., Gao, Q., Liu, J., Ren, L., Chen, H., & Zhu, Y. (2017). Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS ONE, 12(6), 1–17. https://doi.org/10.1371/journal.pone.0179305

Published
2022-03-31
How to Cite
Ulinnuha, Z., & Syarifah, R. N. K. (2022). Photosynthetic pigment content and growth of chili under low light intensity for agroforestry crop development. AGROMIX, 13(1), 27-33. https://doi.org/10.35891/agx.v13i1.2783
Section
Articles