Implementasi GridSearch dalam Meningkatkan Kinerja Model Support Vector Regresion (SVR) utuk Prediksi Penjualan Produk (Studi kasus : Meubel Rohman Jaya)

Implementation of GridSearch to Improve the Performance of the Support Vector Regression (SVR) Model for Predicting Product Sales at Rohman Jaya Furniture

Main Article Content

Ahmad Baidowi Eko Fitra Firmanda
Ahmad Hudawi AS
Abu Tholib
Juvinal Ximenes Guterres
Keywords: Sales Forecasting, Support Vector Regression, GridSearch

In the era of digitalization, product sales forecasting plays a crucial role for companies in estimating future demand. Meubel Rohman Jaya, a furniture business established since 2010, requires accurate predictions to optimize stock availability with the variety of products they produce. This research aims to forecast furniture product sales using the Support Vector Regression (SVR) algorithm with GridSearch optimization. Sales data of 11 furniture products over 30 months (January 2021 - June 2023) were processed through data collection and preprocessing. Modeling was performed using SVR without optimization and SVR with GridSearch optimization to obtain the best parameters. Predictions were generated and then evaluated using the Mean Absolute Percentage Error (MAPE) metric. The results showed that SVR without optimization achieved a MAPE of 40.39%, while SVR with GridSearch achieved a MAPE of 0.45%, indicating a significant increase in accuracy. GridSearch optimization has proven effective in improving prediction performance and is highly recommended for implementation in forecasting product sales at Meubel Rohman Jaya.

S. Kraus, S. Durst, J. J. Ferreira, P. Veiga, N. Kailer, and A. Weinmann, “Digital transformation in business and management research: An overview of the current status quo,” Int. J. Inf. Manage., vol. 63, Dec. 2021, doi: 10.1016/j.ijinfomgt.2021.102466.

A. Vinoline and D. Mahendran, “A STUDY ON THE EFFECT OF SALES FORECASTING ON THE ENTERPRISES,” vol. 12, pp. 2243–2250, Dec. 2023, doi: 10.31838/ecb/2023.12.s2.372.

A. Meylani and E. S. Negara, “Aplikasi Prediksi Kesehatan Menggunakan Machine Learning,” JUPITER J. Penelit. Ilmu dan Teknol. Komput., vol. 14, no. 2-a, pp. 208–215, 2022.

A. Tholib, N. K. Agusmawati, and F. Khoiriyah, “Prediksi Harga Emas Menggunakan Metode Lstm Dan Gru,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, 2023.

V. V. Putri, A. Tholib, and C. Novia, “DETEKSI KAGGLE BOT ACCOUNT MENGGUNAKAN DEEP NEURAL NETWORKS,” NJCA (Nusantara J. Comput. Its Appl., vol. 8, no. 1, pp. 13–21, 2023.

F. N. Fajri, A. Tholib, and W. Yuliana, “Application of Machine Learning Algorithm for Determining Elective Courses in Informatics Study Program,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 3, pp. 485–496, 2022.

A. Hudawi, N. Octavia, A. Elfandiono, A. B. Setiawan, A. A. Ghafur, and A. E. Susanto, “Klasifikasi Pemahaman Santri dalam Pembelajaran Kitab Kuning Menggunakan Algoritma c4. 5. Pohon keputusan (Decision Tree) di Pondok Pesantren Nurul Jadid,” TRILOGI J. Ilmu Teknol. Kesehatan, dan Hum., vol. 2, no. 3, pp. 266–269, 2021.

W. J. Shudiq, A. H. As, and M. F. Rahman, “Penentuan Metode Terbaik Dalam Menentukan Jenis Pohon Pisang Menurut Tekstur Daun (Metode K-NN dan SVM),” J. Teknol. dan Manaj. Inform. Vol 6, No 2 Desember 2020DO - 10.26905/jtmi.v6i2.5156 , Dec. 2020, [Online]. Available: https://jurnal.unmer.ac.id/index.php/jtmi/article/view/5156

A. Ilham, N. A. Verdikha, and A. J. Latipah, “Klasifikasi Ujaran Kebencian di Twitter Menggunakan Fitur Ekstraksi Glove dengan Support Vector Machine(SVM) ,” Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 15, no. 2 SE-Articles, Dec. 2023, doi: 10.35891/explorit.v15i2.4108.

R. Laref, E. Losson, A. Sava, and M. Siadat, “On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications,” Chemom. Intell. Lab. Syst., vol. 184, pp. 22–27, 2019.

P. P. D. di Bandara Sultan, “Support Vector Regression (SVR) Model for Forecasting Number of Passengers on Domestic Flights at Sultan Hasanudin Airport Makassar”.

D. I. Purnama, “Peramalan jumlah penumpang datang melalui transportasi udara di Sulawesi Tengah menggunakan Support Vector Regression (SVR),” J. Ilm. Mat. dan Terap., vol. 17, no. 1, 2020.

R. S. Laminullah, H. Annur, and I. S. Kumala, “Prediksi Penjualan Pertalite Menggunakan Metode Support Vector Regression,” J. Cosphi, vol. 4, no. 1, 2020.

W. M. P. Dhuhita, “Prediksi Harga Rumah Di Kabupaten Bantul Menggunakan Algoritma Support Vector Regression,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 11, no. 2, 2024.

A. A. Suyono, K. Kusrini, and M. R. Arief, “Prediksi Indeks Harga Konsumen Komoditas Makanan di Kota Surabaya menggunakan Support Vector Regression,” Metik J., vol. 6, no. 1, pp. 45–51, 2022.

M. I. Gunawan, D. Sugiarto, and I. Mardianto, “Peningkatan Kinerja Akurasi prediksi penyakit diabetes mellitus menggunakan metode grid Seacrh Pada algoritma logistic regression,” JEPIN (Jurnal Edukasi Dan Penelit. Inform., vol. 6, no. 3, pp. 280–284, 2020.

B. Siswoyo, “MultiClass decision forest machine learning artificial intelligence,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 1–7, 2020.

A. Afriyudi, “Prediksi jumlah siswa baru dengan menggunakan metode exponential smoothing (studi kasus: SMK Ethika palembang),” PREDIKSI JUMLAH SISWA BARU DENGAN MENGGUNAKAN Metod. EXPONENTIAL SMOOTHING (STUDI KASUS SMK ETHIKA PALEMBANG), 2022.

H. Said, N. H. Matondang, and H. N. Irmanda, “Penerapan Algoritma K-Nearest Neighbor Untuk Memprediksi Kualitas Air Yang Dapat Dikonsumsi,” Techno.Com; Vol 21, No 2 Mei 2022DO - 10.33633/tc.v21i2.5901 , May 2022, [Online]. Available: https://publikasi.dinus.ac.id/index.php/technoc/article/view/5901

F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier,” J. Linguist. Komputasional, vol. 5, no. 1, pp. 34–43, 2022.

A. B. Raharjo, Z. Z. Dinanto, D. Sunaryono, and D. Purwitasari, “Prediksi Akumulasi Kasus Terkonfirmasi Covid-19 Di Indonesia Menggunakan Support Vector Regression,” Techno. Com, vol. 20, no. 3, pp. 372–381, 2021.

I. M. Gananta, I. N. Purnama, and K. Q. Fredlina, “OPTIMASI PREDIKSI HARGA EMAS DENGAN METODE SUPPORT VECTOR REGRESSION (SVR) MENGGUNAKAN ALGORITMA GRID SEARCH,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3160–3165, 2023.

T. T. Ngoc, L. van Dai, and D. T. Phuc, “Grid search of multilayer perceptron based on the walk-forward validation methodology,” Int. J. Electr. Comput. Eng., vol. 11, no. 2, pp. 1742–1751, 2021.

D. Swanjaya and D. P. Pamungkas, “Analisa Hasil Prediksi Metode Least Square menggunakan Korelasi dan MAPE pada Toko PS,” Gener. J., vol. 5, no. 1, pp. 11–18, 2021.

A. Hajjah and Y. N. Marlim, “Analisis error terhadap peramalan data penjualan,” Techno. Com, vol. 20, no. 1, pp. 1–9, 2021.

[1]
Ahmad Baidowi Eko Fitra Firmanda, Ahmad Hudawi AS, Abu Tholib, and Juvinal Ximenes Guterres, “Implementasi GridSearch dalam Meningkatkan Kinerja Model Support Vector Regresion (SVR) utuk Prediksi Penjualan Produk (Studi kasus : Meubel Rohman Jaya)”, explorit, vol. 16, no. 1, pp. 22-30, Jun. 2024.