Effect bulking agent on composting mexican sunflower (Tithonia diversifolia L) biomass and utilization on pak choi production

Effect bulking agent on composting mexican sunflower (Tithonia diversifolia L) biomass and utilization on pak choi production

  • Jahra Pelu Fakultas Pertanian dan Kehutanan Universitas Iqra Buru
  • Setyono Y. Tyasmoro Department of Agrotechnology, Faculty of Agriculture, University of Brawijaya,
  • Moch. Dawam Maghfoer Department of Agrotechnology, Faculty of Agriculture and Forestry, University of Iqra Buru
Keywords: Compost, Pakchoi, Raw rice husk, rice husk biochar, Thitonia diversifolia L


Mexican  sunflower or paitan in Indonesian (Thitonia diversifolia L) is a weed with high biomass production  with   nutrient quality that potentially use as composting material. However, there were problem for for optimize composting process due to  low C/N ratio and high moisture content of this material. Therefore co-composting with higher C/N ratio and low moisture bulking materials to attain a proper composting process.  Research to   (1) Evaluate  the effect  of raw rice husk (RRH) and rice husk charcoal (RHC) as bulking agent on quality of compost T.diversifolia. Two composting mixture were    TRRH = biomass T. Diversifolia + raw rice husk and TRHC = T. diversifolia biomass + rice husk biochar. Data were analyzed descriptively and compared with  National Standards of Organic Fertilizer SNI 19-7030-2004. (2) To Compare the  effect TRRH and TRHC compost on growth and yield of pakchoi (Brassica rapa var chinensis). Plant height, number of leaves, leaf area, edible and total fresh weight and N uptake analyzed with ANOVA  and mean diference with Tukey/HSD test. The results showed that (1) T.diversifolia L compost has nutritional quality of N, P, K in accordance with SNI 19-7030-2004,  but the levels of N, P and K in TRHC > TRRH. (2) TTRH.40 planting media gave maximum  growth and yield of pakchoy compared to other treatments. The study confirms that composting T.diversifolia L biomass were potential to enhance pakchoi production while promoting cultivation of vegetables for food security.


Adhikari, B. K., Barrington, S., Martinez, J., & King, S. (2009). Effectiveness of three bulking agents for food waste composting. Waste Management, 29(1), 197–203. https://doi.org/10.1016/j.wasman.2008.04.001

Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1), 81–84. https://doi.org/10.1016/j.fcr.2008.10.008

Barrington, S., Choinière, D., Trigui, M., & Knight, W. (2003). Compost convective airflow under passive aeration. Bioresource Technology, 86(3), 259–266. https://doi.org/10.1016/S0960-8524(02)00155-4

Bernai, M. P., Paredes, C., Sánchez-Monedero, M. A., & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63(1), 91–99. https://doi.org/10.1016/S0960-8524(97)00084-9

Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22), 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027

Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202–214. https://doi.org/10.1111/gcbb.12037

Boonsiri, K., Suangsang, D., Pirommi, S., Sea-ang, A., Tongying, W., Kontha, J., & Weejitian, A. (2009). Effect of granular organic fertilizers on growth and yield of Pak Choi and Rice cv. Phitsanulok 60-2. Asian J. Food Agro-Industry (Special Issue): S160-S163, Special, 160–163.

Bustamante, M. A., Paredes, C., Marhuenda-Egea, F. C., Pérez-Espinosa, A., Bernal, M. P., & Moral, R. (2008). Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere, 72(4), 551–557. https://doi.org/10.1016/j.chemosphere.2008.03.030

Cayuela, M. L., Mondini, C., Insam, H., Sinicco, T., & Franke-Whittle, I. (2009). Plant and animal wastes composting: Effects of the N source on process performance. Bioresource Technology, 100(12), 3097–3106. https://doi.org/10.1016/j.biortech.2009.01.027

Chang, J. I., & Chen, Y. J. (2010). Effects of bulking agents on food waste composting. Bioresource Technology, 101(15), 5917–5924. https://doi.org/10.1016/j.biortech.2010.02.042

Clough, T. J., & Condron, L. M. (2010). Biochar and the Nitrogen Cycle: Introduction. Journal of Environmental Quality, 39(4), 1218–1223. https://doi.org/10.2134/jeq2010.0204

Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275–293. https://doi.org/10.3390/agronomy3020275

de Bertoldi, M., Vallini, G., & Pera, A. (1983). The biology of composting: A review. Waste Management & Research, 1(2), 157–176. https://doi.org/10.1016/0734-242X(83)90055-1

dela Cruz, N. E., Aganon, C. P., Patricio, M. G., Romero, E. S., Lindain, S. A., & Galindez, J. L. (2006). Production of organic fertilizer from solid waste and its utilization in intensive organic-based vegetable production and for sustaining soil health and productivity. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use, 16, 20.

Dewi, A. B., Pujiastuti, N., & Fajar, I. (2013). Ilmu gizi untuk praktisi kesehatan. Graha Ilmu.

Dias, B. O., Silva, C. A., Higashikawa, F. S., Roig, A., & Sánchez-Monedero, M. A. (2010). Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresource Technology, 101(4), 1239–1246. https://doi.org/10.1016/j.biortech.2009.09.024

Epstein, E. (2011). Industrial Composting: Environmental Engineering and Facilities Management. CRC Press.

Gabhane, J., William, SPM. P., Bidyadhar, R., Bhilawe, P., Anand, D., Vaidya, A. N., & Wate, S. R. (2012). Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresource Technology, 114, 382–388. https://doi.org/10.1016/j.biortech.2012.02.040

Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils, 35(4), 219–230. https://doi.org/10.1007/s00374-002-0466-4

Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., & Shen, Y. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology, 112, 171–178. https://doi.org/10.1016/j.biortech.2012.02.099

Gusmailina, G. (2010). Pengaruh arang kompos bioaktif terhadap pertumbuhan anakan bulian (Eusyderoxylon zwageri) dan gaharu (Aquilaria malaccensis). Jurnal Penelitian Hasil Hutan, 28(2), 93–110.

Hua, L., Wu, W., Liu, Y., McBride, M. B., & Chen, Y. (2009). Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environmental Science and Pollution Research, 16(1), 1–9. https://doi.org/10.1007/s11356-008-0041-0

Hubbe, M. A., Nazhad, M., & Sánchez, C. (2010). Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. BioResources, 5(4), 2808–2854.

Iqbal, M. K., Nadeem, A., Khan, R. A., & Hussnain, A. (2012). Comparative study of different techniques of composting and their stability evaluation in municipal solid waste. Journal of The Chemical Society of Pakistan, 34(6), 273–282.

Jindo, K., Suto, K., Matsumoto, K., García, C., Sonoki, T., & Sanchez-Monedero, M. A. (2012). Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresource Technology, 110, 396–404. https://doi.org/10.1016/j.biortech.2012.01.120

Kammann, C., Haider, G., Messerschmidt, N., Schmidt, H.-P., Koyro, H.-W., Steffens, D., Clough, T., & Müller, C. (2014). Co-composted biochar can promote plant growth by serving as a nutrient carrier: First mechanistic insights. 16(1), 15635.

Komarayati, S., & Pari, G. (2012). Arang hayati dan turunannya sebagai stimulan pertumbuhan jabon dan sengon. BUANA SAINS, 12(1), 1–6. https://doi.org/10.33366/bs.v12i1.142

Kumar, M., Ou, Y.-L., & Lin, J.-G. (2010). Co-composting of green waste and food waste at low C/N ratio. Waste Management, 30(4), 602–609. https://doi.org/10.1016/j.wasman.2009.11.023

Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3), 443–449. https://doi.org/10.1016/j.geoderma.2010.05.013

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management (1st ed.). Routledge. https://doi.org/10.4324/9781849770552

Lehmann, J., Joseph, S., & Joseph, S. (2012). Biochar for environmental management: Science and technology. Routledge. https://doi.org/10.4324/9781849770552

Lehmann, J., & Rondon, M. (2006). Bio-char soil management on highly weathered soils in the humid tropics. Biological Approaches to Sustainable Soil Systems, 113(517), e530.

Liu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B., & Glaser, B. (2012). Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. Journal of Plant Nutrition and Soil Science, 175(5), 698–707. https://doi.org/10.1002/jpln.201100172

Mahimairaja, S., Bolan, N. S., Hedley, M. J., & Macgregor, A. N. (1994). Losses and transformation of nitrogen during composting of poultry manure with different amendments: An incubation experiment. Bioresource Technology, 47(3), 265–273. https://doi.org/10.1016/0960-8524(94)90190-2

Masulili, A., Utomo, W. H., & Syechfani, M. S. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1), 39.

Maurya, V. K., Gothandam, K. M., Ranjan, V., Shakya, A., & Pareek, S. (2018). Effect of drying methods (microwave vacuum, freeze, hot air and sun drying) on physical, chemical and nutritional attributes of five pepper (Capsicum annuum var. Annuum) cultivars. Journal of the Science of Food and Agriculture, 98(9), 3492–3500.

Munir, M., & Swasono, M. A. H. (2012). Potensi pupuk hijau organik (daun trembesi, daun paitan, daun lantoro) sebagai unsur kestabilan kesuburan tanah. Agromix, 3(2), 1–17. https://doi.org/10.35891/agx.v3i2.750

Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Science, 174(2), 105–112. https://doi.org/10.1097/SS.0b013e3181981d9a

Nugroho, J., Bintoro, N. S., & Nurkayanti, T. (2010). Pengaruh variasi jumlah dan jenis bulking agent pada pengomposan limbah organik sayuran dengan komposter mini. Seminar Nasional Perhimpunan Ahli Teknik Pertanian 2010, 606–611. https://repository.ugm.ac.id/33088/

Nur, M. S. M., Islami, T., Handayanto, E., Nugroho, W. H., & Utomo, W. H. (2014). The use of biochar fortified compost on calcareous soil of East Nusa Tenggara, Indonesia: 2. Effect on the yield of maize (Zea Mays l) and phosphate absorption. American-Eurasian Journal of Sustainable Agriculture, 105–112.

Ojeniyi, S. O., Odedina, S. A., & Agbede, T. M. (2012). Soil productivity improving attributes of mexican sunflower (Tithoniadiversifolia) and siam weed (Chromolaena odorata). Emirates Journal of Food and Agriculture, 24(3), 243–247.

Olabode, O. S., Sola, O., Akanbi, W. B., Adesina, G. O., & Babajide, P. A. (2007). Evaluation of Tithonia diversifolia (Hemsl.) A Gray for soil improvement. World Journal of Agricultural Sciences, 3(4), 503–507.

Opena, R. T., & Tay, D. C. S. (1994). Brassica rappa L. Group Caisim. Plant Resource of South-East Asia, Vegetable. Prosea Foundation. Hal, 153–157.

Pardono, -. (2011). Potensi Chromolaena odorata dan Tithonia diversifolia sebagai sumber nutrisi bagi tanaman berdasarkan kecepatan dekomposisinya (studi kasus di desa Sobokerto Boyolali Jawa Tengah). Agrovigor: Jurnal Agroekoteknologi, 4(2), 80–85. https://doi.org/10.21107/agrovigor.v4i2.296

Pietikäinen, J., Kiikkilä, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231–242. https://doi.org/10.1034/j.1600-0706.2000.890203.x

Prendergast‐Miller, M. T., Duvall, M., & Sohi, S. P. (2014). Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science, 65(1), 173–185. https://doi.org/10.1111/ejss.12079

Prost, K., Borchard, N., Siemens, J., Kautz, T., Séquaris, J.-M., Möller, A., & Amelung, W. (2013). Biochar affected by composting with farmyard manure. Journal of Environmental Quality, 42(1), 164–172. https://doi.org/10.2134/jeq2012.0064

Rosiana, E., Nurliana, & Armansyah, T. (2013). Kadar asam laktat dan derajat asam kefir susu kambing yang di fermentasi dengan penambahan gula dan lama inkubasi yang berbeda. Jurnal Medika Veterinaria, 7(2), 87–90.

Rosolem, C. A., & Calonego, J. C. (2013). Phosphorus and potassium budget in the soil–plant system in crop rotations under no-till. Soil and Tillage Research, 126, 127–133.

Sahwan, F. L. (2004). Efektivitas pengkomposan sampah kota dengan menggunakan “komposter” skala rumah tangga. Jurnal Teknologi Lingkungan, 5(2), 134–139. https://doi.org/10.29122/jtl.v5i2.309

Schmidt, H.-P., Kammann, C., Niggli, C., Evangelou, M. W. H., Mackie, K. A., & Abiven, S. (2014). Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems & Environment, 191, 117–123. https://doi.org/10.1016/j.agee.2014.04.001

Schulz, H., Dunst, G., & Glaser, B. (2013). Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development, 33(4), 817–827. https://doi.org/10.1007/s13593-013-0150-0

Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). Chapter 2—A Review of Biochar and Its Use and Function in Soil. In Advances in Agronomy (Vol. 105, pp. 47–82). Academic Press. https://doi.org/10.1016/S0065-2113(10)05002-9

Spokas, K. A., & Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. 3(612), 179–193.

Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality, 39(4), 1236–1242. https://doi.org/10.2134/jeq2009.0337

Sundberg, C. (2005). Improving compost process efficiency by controlling aeration, temperature and pH (Vol. 2005).

Supadma, A. A. N., & Arthagama, D. M. (2008). Uji formulasi kualitas pupuk kompos yang bersumber dari sampah organik dengan penambahan limbah ternak ayam, sapi, babi dan tanaman pahitan. Bumi Lestari Journal of Environment, 8(2), 113–121.

Sweeten, J. M., & Auvermann, B. W. (2008). Composting manure and sludge. Texas Agrilcultural Extension Service, L–2289, 1–7.

Tanaka, S., Yoshizawa, S., Ohata, M., Mineki, S., Goto, S., Fujioka, K., & Kokubun, T. (2006). Morphological change of microbial community structure during composting rice bran with charcoal. Transactions-Materials Research Society of Japan, 31(4), 981.

Theeba, M., Bachmann, R. T., Illani, Z. I., Zulkefli, M., Husni, M. H. A., & Samsuri, A. W. (2012). Characterization of local mill rice husk charcoal and its effect on compost properties. Malaysian Journal of Soil Science, 16(1), 89–102.

Tiquia, S. M., Richard, T. L., & Honeyman, M. S. (2002). Carbon, nutrient, and mass loss during composting. Nutrient Cycling in Agroecosystems, 62(1), 15–24. https://doi.org/10.1023/A:1015137922816

Tiquia, S. M., & Tam, N. F. Y. (2000). Fate of nitrogen during composting of chicken litter. Environmental Pollution, 110(3), 535–541. https://doi.org/10.1016/S0269-7491(99)00319-X

Tshikalange, T. E. (2006). Response of Brassica rapa L. subsp. Chinensis to nitrogen, phosphorus and potassium in pots [Thesis, Tshwane University of Technology]. http://tutvital.tut.ac.za:8080/vital/access/manager/Repository/tut:3898

Wahyono, S., Sahwan, F. L., Martono, J. H., & Suyanto, F. (2008). Evaluasi teknologi penanganan limbah padat industri sawit. Prosiding Seminar Teknologi Untuk Negeri, BPPT.

Yoshizawa, S., Tanaka, S., Ohata, M., Mineki, S., Goto, S., Fujioka, K., & Kokubun, T. (2006). Promotion effect of various charcoals on the proliferation of composting microorganisms. 炭素, 224, 261–265. https://doi.org/10.7209/tanso.2006.261

Yoshizawa, S., Tanaka, S., Ohata, M., Mineki, S., Goto, S., Fujioka, K., & Kokubun, T. (2005). Composting of food garbage and livestock waste containing biomass charcoal. Proceedings of the International Conference and Natural Resources and Environmental Management, 8, 2011.

Yu, O.-Y., Raichle, B., & Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy and Environmental Engineering, 4(1), 44. https://doi.org/10.1186/2251-6832-4-44

Zaman, B., & Sutrisno, E. (2007). Studi pengaruh pencampuran sampah domestik, sekam padi, dan ampas tebu dengan metode mac donald terhadap kematangan kompos. Jurnal PRESIPITASI, 2(1), 1–7.

Zhu, N. (2007). Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresource Technology, 98(1), 9–13. https://doi.org/10.1016/j.biortech.2005.12.003

How to Cite
Pelu, J., Tyasmoro, S. Y., & Maghfoer, M. D. (2020). Effect bulking agent on composting mexican sunflower (Tithonia diversifolia L) biomass and utilization on pak choi production. AGROMIX, 11(1), 49-65. https://doi.org/10.35891/agx.v11i1.1906