Involvement of humic acid in production and physiology of soybean (Glycine max L.) under drought stress conditions

  • Susilo Budiyanto Laboratory of Plant Ecology and Production, Department of Agriculture, Diponegoro University, Semarang
  • Hanifah Syifaa Almas Agroecotechnology Study Program, Diponegoro University, Semarang
  • Rosyida Rosyida Laboratory of Plant Physiology and Breeding, Department of Agriculture, Diponegoro University, Semarang
Keywords: biostimulants, drought stress, humic acid, soybeans

Abstract

Introduction: This study aims to determine the best effect of soybean plant production and physiology on humic acid application under drought-stress conditions. Methods: This study used a factorial complete randomized design with three levels of humic acid (0 ppm, 500 ppm, and 1000 ppm) and three levels of drought stress (80% KL, 60% KL, and 40%). The parameters analyzed were the number of flowers, pod fresh weight, pod dry weight, number of seeds, leaf chlorophyll, relative water content (RWC), and stomatal density. Results: The highest number of flowers was in the 80% KL drought stress treatment; the highest pod fresh weight and pod dry weight were in the 80% KL drought stress treatment; the highest number of seeds was in the 80% KL drought stress treatment; the highest leaf chlorophyll was in the 1000 ppm humic acid treatment and 80% KL drought stress; the highest relative water content (RWC) was in the interaction between 1000 ppm humic acid and 80% KL drought stress; and the highest stomatal density was in the 80% KL drought stress treatment. Conclusion: Humic acid application affects leaf chlorophyll and relative water content (RWC). Drought stress affects the number of flowers, pod fresh weight, pod dry weight, number of seeds, leaf chlorophyll, relative water content (RWC), and stomatal density. There was an interaction effect between humic acid application and drought stress on the relative water content (RWC) parameter.

References

Alshaal, T., & El-Ramady, H. (2017). Foliar application: from plant nutrition to biofortification. Environment, Biodiversity and Soil Security, 1(2017), 71-83.

Aziza, I., Y. S. Rahayu, & S. K. Dewi. (2022). Pengaruh pupuk organik cair dengan penambahan silika dan cekaman air terhadap pertumbuhan tanaman kedelai. Berkala Ilmiah Biologi, 11(1), 183 - 191.

Badan Pusat Stastistik Indonesia. 2021. Statistik potensi rata-rata kedelai di Indonesia. Jakarta : Badan Pusat Statistik Indonesia.

Dewi, S. M., Y. Yuwariah, W. A.Qosim, & D. Ruswandi. (2019). Pengaruh cekaman kekeringan terhadap hasil dan sensitivitas tiga genotip jawawut. Kultivasi, 18(3), 933 – 941.

El-Bassiony, A. M., Z. F. Fawzy, M. M. H. Abd El-Baky, & A. R. Mahmoud. (2010). Response of snap bean plants to mineral fertilizers and humic acid application. Agriculture, Biology, and Science, 6(2), 169-175.

Fauziah, N. O., B. Joy, Y. Machfud, E. T. Sofyan, & O. Mulyani. (2018). Pengaruh kombinasi organomineral terhadap c-organik, p dan k-tersedia serta hasil kedelai pada ultisols asal jatinangor. Agrotek Indonesia, 3(2), 129 - 136.

Fenta, B.A., S.E, Beebe, K.J. Kunert, J.D. Burridge, K.M. Barlow, J.P. Lynch, & C.H. Foyer. (2014). Field phenotyping of soybean roots for drought stress tolerance. Agronomy, 4, 418-435.

Gong, L., H. Zhang, X. Liu, X. Gan, F. Nie, W. Yang, L. Zhang, Y. Chen, Y. Song, & H. Zhang. (2020). Ectopic expression of HaNAC1, an ATAF transcription factor from Haloxylon ammodendron, improves growth and drought tolerance in transgenic Arabidopsis. Plant Physiol and Biochem, 15(1), 535 – 544.

Kobraei, S., Etminan, A., Mohammadi, R., & Kobraee, S. (2011). Effects of drought stress on yield and yield components of soybean. Annals of Biological Research, 2(5), 504-509.

Liana, D., Astuti, T., Purba, D. P., & Panjaitan, F. J. (2023). Respon fisiologi kedelai (Glycine max. L (Merr)) varietas ajasmoro di Kecamatan Ruteng, Kabupaten Manggarai. Savana Cendana, 8(2), 53-57.

Maimunah, M., G. Rusmayadi, & B. F. Langai. (2018). Pertumbuhan dan hasil dua varietas tanaman kedelai (Glycine max (L.) Merril) dibawah kondisi cekaman kekeringan pada berbagai stadia tumbuh. Enviro Scienteae, 14(3), 211 - 221.

Makbul, S., N.S. Guler, N. Durmus, & S. Guven. (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany, 35,369-377.

Maulana, D., S. Sarno, & Y. Nurmiaty. (2014). Pengaruh aplikasi asam humat dan pemupukan fosfor terhadap serapan unsur hara P dan K tanaman tomat (Lycopersicum esculentum). Agrotek Tropika, 2(2), 302 – 305.

Nuraini, Y., & Zahro, A. (2020). Pengaruh aplikasi asam humat dan pupuk npk terhadap serapan nitrogen, pertumbuhan tanaman padi di lahan sawah. Jurnal Tanah dan Sumberdaya Lahan, 7(2), 195-200.

Pajrita, A., Noli, Z. A., & Suwirmen, S. (2023). Pengaruh ekstrak daun kelor yang diekstraksi dengan beberapa jenis pelarut sebagai biostimulan terhadap pertumbuhan bayam merah. Bioscientist: Jurnal Ilmiah Biologi, 11(1), 531-542.

Rahardian, K. (2013). Pengaruh kadar air terhadap pertumbuhan dan produktivitas tanaman kedelai. Departemen Geofisika dan Meteorologi Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor.

Ruminta, R., A. W. Irwan, T. Nurmala, & G. Ramadayanty. (2020). Analisis dampak perubahan iklim terhadap produksi kedelai dan pilihan adaptasi strategisnya pada lahan tadah hujan di Kabupaten Garut. Kultivasi, 19(2), 1089-1097.

Saputra, D. S., P. B. Timotiwu, & E. Ermawati. (2015). Pengaruh cekaman kekeringan terhadap pertumbuhan dan produksi benih lima varietas kedelai. Agrotek Tropika, 3(1), 7-13.

Selim EM, I. S. Shaymaa, F. A. Faiz, & A. S. El-Neklawy. (2012). Interactive effects of humic acid and water stress on chlorophyll and mineral nutrient contents of potato plants. Applied Sciences Research, 8(1), 531 - 537.

Selladurai R, & T. J. Purakayastha. (2016). Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. Journal of Plant Nutrition, 3(9), 949-956.

Shahriari, A. G., Soltani, Z., Tahmasebi, A., & Poczai, P. (2022). Integrative system biology analysis of transcriptomic responses to drought stress in soybean (Glycine max L.). Genes, 13(10), 1732.

Simanjuntak, J., Hanum, C., & Hanafiah, D.S. (2015). Pertumbuhan dan produksi dua varietas kedelai pada cekaman kekeringan. Jurnal Agroekoteknologi, 3(3), 915 – 922.

Suryaningrum, R., E. Purwanto, & S. Sumiyati. (2016). Analisis pertumbuhan beberapa varietas kedelai pada perbedaan intensitas cekaman kekeringan. Agronomi, 18(2), 33 - 37.

Triastono, J., E. Kurniyati, & R. K. Jatuningtyas. (2020). Status dan strategi pengembangan kedelai untuk swasembada di Indonesia.. Prosiding Seminar Nasional Pertanian Peternakan Terpadu Ke-3, Universitas Muhammadiyah Purworejo, 215–226.

Wahyuningsih., E. Proklamaningsih, & M. Dwiati. (2016). Serapan fosfor dan pertumbuhan kedelai (Glycine max) pada tanah ultisol dengan pemberian asam humat. Jurnal Fakultas Biologi, 1(1), 68 - 69.

Wijayanto, B. & Sucahyo, A. (2021). Pengaruh pupuk organik cair dan asam humat pada budidaya kedelai. Jurnal Ilmu-Ilmu Pertanian, 28(1), 56 - 61.

Published
2024-09-30
How to Cite
Budiyanto, S., Almas, H. S., & Rosyida, R. (2024). Involvement of humic acid in production and physiology of soybean (Glycine max L.) under drought stress conditions. AGROMIX, 15(2), 186-192. https://doi.org/10.35891/agx.v15i2.4432
Section
Articles