PENAMBAHAN EKSTRAK KULIT BUAH NAGA PADA PENGEMBANGAN PRODUK NATA DE COCO BERANTIOKSIDAN

  • Budi Santosa
  • Lorine Tantalu Program Studi Teknologi Industri Pertanian, Fakultas Pertanian, Universitas TribhuwanaTunggadewi Malang
  • Untung Sugiarti Fakultas Pertanian Universitas Widyagama Malang

Abstract

Nata de coco is made from coconut water which is processed by fermentation using Acetobacterxylinum. The nutrients in this product are mostly cellulose fibers better known as bacterial cellulose. High fiber in it makes this product suitable for health when consumed. This study aims to determine the best treatment that gives the results of quality nata de coco. The experimental design used in this study was Factorial Completely Randomized Design with two treatment factors, namely the first factor comparison between dragon fruit skin extract and coconut water, consisting of five levels of treatment P1 = 5% dragon fruit skin extract: 95% coconut water, P2 = 15% dragon fruit skin extract: 85% coconut water, P3 = 25% dragon fruit skin extract: 75% coconut water, P4 = 35% dragon fruit skin extract: 65% coconut water, P5 = 45% dragon fruit skin extract: 55 % coconut water. The second factor is the boiling temperature, consisting of three levels of treatment S1 = 30ºC, S2 = 40ºC, S3 = 50ºC. Repeat for each treatment combination twice. Observation parameters included thickness of nata, weight of nata, anthocyanin level and fiber content. The results showed that the addition of dragon fruit skin extract had not been able to increase the thickness of the nata, nata weight and nata fiber levels but could increase the level of anthocyanin nata. The highest proportion of thickness, weight and highest levels of nata de coco fiber was obtained in the treatment of 5% dragon fruit skin extract and 95% coconut water. The best proportion with the highest anthocyanin level is in the treatment of 45% dragon fruit skin extract and 55% coconut water. The best boiling temperature is at 300C. Boiling temperature does not affect the thickness of the weight and the fiber content of nata de coco. Boiling temperature significantly affects the anthocyanin level of nata de coco..

References

Alwi, M. Lindhemuthianingrum, A dan Umrah. (2011). Formulasi Media Tumbuh Acetobacter xylinum Dari Bahan Limbah Cair Tempe Dan Air Kelapa Untuk Produksi Nata de Soyacoco. Jurnal Biocelebes 5(2): 126 – 132.

Barry, V. and Mc Cleary. (2014). Modification to AOAC Official Mehods 2009.01 and 2011.25 to Allow for Minor Overestimation of Low Moleculer Weight Soluble Dietary Fiber in Samples Containing Starch. Journal of AOAC International (97)3: 896 – 901.

Gayathry, G. (2015). Production of Nata de Coco a Natural Dietary Fibre Product from Mature Coconut Water Using Gluconacetobacter xylinum. International Journal Food Fermentation Technology 5(2): 231 – 235.

Giusti, M.M. and R. E. Wrolstad. (2001). Characterization and Measurement of Antochyanins by UV-Visible Spectroscopy Unit F1.2 in Current Protocols. Food Analytical Chemestry.John Wiley and Sons, Inc. New York.

Hanafiah, K.A. (2012). Rancangan Percobaan (Teori Dan Aplikasi). Jakarta. Rajawali Press. 70 – 134.

Handayani, A.P dan A. Rahmawati. (2012). Pemanfaatan Kulit Buah Naga (Dragon Fruit) Sebagai Pewarna Alami Makanan Pengganti Pewarna Sintensis. Jurnal Bahan Alam Terbarukan. Vol 1: 19-24.

Hidayat, N. Padaga, M.C dan Suhartini, S. (2006). Mikrobiologi Industri. Yogyakarta. Penerbit Andi: 121 – 125.

Hermani, Raharjo,M., (2005). Tanaman Berkhasiat Antioksidan, Penebar Swadaya, Jakarta.

Kumalaningsih, S. (2012). Metodologi Penelitian (Kupas Tuntas Cara Mencapai Tujuan). Malang. UB Press: 92 – 100.

Lin, W.C. Lien, C.C. Yeh, H.J. Yu, C.M. and Hsu, S.H. (2013). Bacterial Cellulose and Bacterial Cellulose-Chitosan Membranes for Wound Dressing Applications. Journal of Carbohydrat Polymers (94): 603 – 611.

Jusuf, M.,Rahayuningsih, St. A. dan Ginting, E. (2008). Ubi jalar ungu. Warta Penelitian dan Pengembangan Pertanian 30: 13-14.

Manoi, F. (2007). Penambahan Ekstrak Ampas Nenas Sebagai Medium Campuran Pada Pembuatan Nata de Cashew. Buletin Littro XVIII (1): 107 – 116.

Mizrahi, Y., E. Reveh, E. Yossov, A. Nerd and J. Ben-Asher, (2002). New Fruit Crops High Water Use Efficiency.In : Issue innew Crops and New Uses. J. janick and A. Whipkey (eds). ASHA Press, Alexandria, VA : 216 – 222.

Nugroho, D. A. dan Aji, P. (2015). Characterization of Nata de Coco Produced by Fermentation of Immobilized Acetobacter xylinum. Journal of Agriculture and Agriculture Science Procedia (3): 278 – 282.

Nurliyana, R., Zahir, I. S., Suleiman, K. M., Aisah, M.R., dan Rahim, K. K., (2010), Antioxidant Study Of Pulps And Feel Of Dragon Fruits : A Comparative Study, International Food Research Journal, (17) : 367-365.

Runtunuwu, S.D. Assa, J. Rawung, D. dan Kumolontang, W. (2011). Kandungan Kimia Daging Dan Air Buah Sepuluh Tetua Kelapa Dalam Komposit. Buletin Palma 12(1): 57 – 65.

Saneto, B. (2005). Karakteristik Kulit Buah Naga Merah (Hylocereus polyrhizus). Jurnal Agarika. Vol 2: 143-149.

Santosa, B. Ahmadi, Kgs. dan Taeque, D. (2012). Dextrin Concentration and Carboxy Methyl Cellulosa (CMC) in Making of Fiber-Rich Instant Baverage from Nata de Coco. International Journal of Science and Technology 1(1): 6 – 11.

Wu, L. C., Hsu, H. W., Chen, Y., Chiu, C. C., and Ho, Y. L,. (2006). Antioxidant and Antiproliferative Activities of Red Pitaya. Journal of Food Chemistry(95) : 319–327.

Zubia, M., Robledo.D.,& Freile-Pelegrin Y. (2007). Antioxidant Ctivities In Marine Macroalgae From The Coasts Of Quintana Roo And Yucatan, Mexico. Journal of Applied Phycology (19): 449-458.

Published
2019-03-19
How to Cite
Santosa, B., Tantalu, L., & Sugiarti, U. (2019). PENAMBAHAN EKSTRAK KULIT BUAH NAGA PADA PENGEMBANGAN PRODUK NATA DE COCO BERANTIOKSIDAN. Teknologi Pangan : Media Informasi Dan Komunikasi Ilmiah Teknologi Pertanian, 10(1), 1-8. https://doi.org/10.35891/tp.v10i1.1433
Section
Artikel